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Step Response of Lossless Nonuniform Transmission
Lines with Power-Law Characteristic Impedance
Function

H. CURTINS, STUDENT MEMBER, IEEE, AND
A. V. SHAH, MEMBER, IEEE

Abstract — The step-response waveform of the lossless nonuniform trans-
mission line possessing a characteristic impedance function Z.(x)=
Zy(1+ nx)?", n=10,1,2,..., is deduced. The simple and closed-form solu-
tions should be useful for pulse transient analysis involving nonuniform
transmission lines.

I. INTRODUCTION

Nonuniform transmission lines (NTL’s) are used, e.g., as im-
pedance matching devices [1]-[4], pulse transformers [9]-[12],
filters [5], resonators [2], directional couplers [6], etc. Their
frequency-domain behavior has been investigated extensively for
a number of special NTL types. In certain cases, it is desirable to
find exact and closed-form solutions for the transient response of
NTL’s. Even though a number of different methods were devel-
oped in the past (see, e.g., [10]), the approach via the Laplace
transform seems to be one of the most suitable in achieving the
above goal. Note that the availability of time-domain solutions
by this method depends strongly on the kind of limit conditions
(source and load impedances, Z, and Z,, respectively) imposed
onto the system [10]. To the authors’ best knowledge, closed-form
time-domain solutions so far have not been reported at all, for
any class of NTL’s, except for a single special case [11]. In fact,
the calculation of the transient response of NTL’s tends to
become a very involved computational problem. Reference [9]
illustrates well the degree of complexity encountered in deriving
the expressions for step response of the exponential transmission
line (ETL).

The present analysis aims to deduce the expressions for the
step response of a whole class of NTL’s characterized by the
characteristic impedance function Z.(x)= Z,(1+1x)%*", n=
0.1,2,..., hereafter referred to as the power-law transmission line
(PLTL). Frequency-domain solutions for this type of transmis-
sion line have already been presented, e.g., by [4], [7]-[8], where
exact network functions are also given. The parabolic transmis-
sion line (PTL) analyzed by the authors in [11] with index n =1 is
contained as a special case in this time-domain analysis. On the
other hand, the ETL treated in numerous papers (frequency-
domain treatment) is reached asymptotically by this class of lines,
if n— 0.
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II. BAsIC SOLUTIONS

The analysis is based on the following assumptions for the
characteristic impedance Z (x) and the propagation function

v(p):
Z(x)=Zy(1+9x)"", n=0,1,2,...} W
vy (p)=p/c
where
Xx position along the line,
m taper parameter,
p Laplace transformation complex variable,
¢ wave propagation velocity ( = constant).

Using (1), one finds as solutions of the well-known second-order
differential equations [1]-[3], [9] describing the propagating volt-
age V(x,v) and current I(x,vy), [12], [13]
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where y = (14 nx). The suffix + denotes waves traveling in the
+ x-direction and — x-direction, respectively. By setting n = +1,
one may verify the solutions for the PTL given by [11] (=0
corresponds to the solutions of the uniform transmission line).!

II1.

We are interested in the waveform f(/, ¢), which appears across
the load Z, (see configuration shown in Fig. 1), if the transmis-
sion line is excited by a unit step generator at its input. Further-
more, the time ¢ shall be limited to the range //c<¢<3//c,
where //c is the time delay of the line and 3/ /¢ corresponds to
the time after which the first reflection returns from the sending
end. One then obtains. using (2) and evaluating it for the limit
conditions at x=0 and x =/ (Fig. 1), the Laplace transform
F(l, p)[12]

STEP-RESPONSE WAVEFORM

2v,y] ' ¥ Lexp(— pl/c)
(1+"1)()’12n+”2) P(x=0,p)P,(x=1,p)

(3)

F(l,p)=

'Here, n 1s a positive mteger number. For negative n, one obtains by
symmetry considerations of the differential equations for voltage and current:
Vilx,p;n<0)==xZsI , (x,p:n>0) and J,(x,p;n<0)=
+(1/Z)V i (x.pin>0) B
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Fig. 1. Basic configuration analyzed.
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Fig. 2. Calculated step-response curves f,(¢) = f,(/, 1) as function of the nor-
malized time cz// with the voltage transforming ratio M and the power
index » as parameters. The following conditions are assumed: v; = Z, /Z; =1
and v, = Z, /Z, = M?.

where
nw=2/Zy v,=2/Zyand y, =(1+1l)

[V+ ©,p)+Z1, (Osp)]pn

Pl(x=0,p)=1+y
1

Pz(x=l7p)=
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where P, and P, are polynomials of order » in p,and V_, V_,
I, , I_ are the basic solutions given in (2).

If we denote the zeros of P; by py,..., p, and the zeros of P,
by p,.1s-.-, P2, then the step-response waveform f(/,#) results
in

10,0~ S gl pu(i-1/0)]
1) = - aexpl p(t—1/¢)],
(1+v) (3 +2) /2 ¢ *
/ 3/ s
—-<t<—.
- RN C)
The expression for the coefficient a, is given by
2n—1
P
o= (6)
n (pk-'pm)
m=1

m#k
The procedure involved in finding the step-response waveform
for a given power index n can consequently be summarized into
the following important steps: Calculation of a) polynomials P;
and P, via (4), b) zeros of P, and P,, and c) the step-response
waveform f(/,t) using (5) and (6).

In Figs. 2 and 3, several step-response curves are graphically
illustrated for different voltage transforming ratios M = y{' and
for two different values of the generator impedance Z_. In
addition, in Fig. 3, the PLTL is compared with the exponential
transmission line (ETL) analyzed by Schatz [9].

IV. ZeRros of P,(p) AND P,(p)

One can show that all zeros of the polynomial P, are in the
left-half p-plane (Re( p) < 0), while all zeros of P, are situated in
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Fig. 3. Comparison of calculated step-response waveforms for the ETL, PTL,
and PLTL (n = 5) for two values of the voltage transforming ratio M. The
following parameters are assumed for the calculation: vy = Z /Z; =0 and
vy = Z,/Zy = M?. (Note: The evaluation of the step-response waveform for
the ETL under arbitrary limit conditions Z; and Z, is rather complex. The
curves for the ETL in this figure are taken from [9].)

TABLE1
ZEROS OF POLYNOMIALS P, AND P, FOR TwO DIFFERENT VALUES.
OF THE GENERATOR IMPEDANCE Z_ = ( AND Z, = Z,.

Zeros P of polynomial P1 s k=1l,.00n Zeros of polynomial PZ B
Note: p _=p Nc k=n+l,...,2n; p =pAncly,
n | v=z/z =0 v, =2 /2 =1 v, =2,/Z =y2" - M
1 s'7n 1 s' 70 2- 7 "0
1 oL % 1
Loipf= Pz -2 R 3
2 [ Yo [ * _
P s 328 3/3/2 Py, 12342 IR EA
v "o -
3 |py=-2.322 py=-1.818 pj= 1.019
LR ). L oo==1.361 531, e 1.3 Ey 1L
Py 4= 18395 1.754 Py 3 =1-3¢1£9 1.525 Py gt 1-301%31.525
to=- 0. ! = -2.3%4 ¢ 0. * = 2.386%3 0,
4 P},,7-2.895%5 0.887 |py = -2.384 %5 0.78  pr - 2.3361)0.784
L, =-2.106% 3 2,657 Y= -1.606 %3 2.387 ¥ = 1.806:j 2.387
P34 3 P34 3 P7 g 32.38
p1'=-3.sa7 p1' = -3,143 Pé = 3,143
DL =-3.352 £ 3174 ! L =-2.850 £ § 1.6 3 = 2.850 % j1.
5 P2_3 J 3 1:'2’3 2 ] 05 P78 2.85¢ 3 1.508
pzl's:—z.}zs £33.87 |p, o= -1.828 ] 3.272 |pF - 1.828%) 3.272
f ,

In both cases, a load impedance Z, = Z, 2" = Z, M? 15 assumed (the
load impedance is matched to the impedance level of the line at x =/).:
The zeros for any other values of Z; and Z; can be calculated using (4).

the right-half p-plane (Re( p) > 0) [12).2 In Table I, the zeros are
calculated for the generator impedance Z, =0 and Z = Z;. In
both cases, Z, = Z, y2" (matched configuration at the load).

V. CONCLUSIONS

The extension of the step-response analysis for the parabolic
transmission line (#=1) to the more general case of the char-
acteristic impedance function Z (x)= Zy(1+ n1)*", n=
0,1,2,..., expands the class of nonuniform transmission lines
having a simple step-response waveform. The model should con-
sequently be useful for transient analysis involving nonuniform
transmission lines. Because of the relationship

nXx 2n
Z(x)=Zyexp(nx) = nlin:o Zo(l+ 2_n)

such a power-law transmission line may be used to approximate
the step response of the exponential line. Fig. 3 shows this
approximation behavior. As may be seen from [9], such an
approximation function facilitates considerably the quantitative
evaluation of the step response waveform (at least for reasonably
low values of the power index #).

2The reader should not get confused by the fact that the zeros of the
polynomual P, are in the right-half p-plane (Re(p)>0) The stability of the
system is still assured, as the time variable ¢ was hmited to ¢ < 3/ /¢ (see (5)).
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Development and Testing of a 2450-MHz Lens Applicator
for Localized Microwave Hyperthermia

YOSHIO NIKAWA, MAKOTO KIKUCHI,
AND SHINSAKU MORI

Abstract — A new type of applicator with a convergent lens for localized
microwave hyperthermia is developed. A lens applicator of direct contact
type was designed to conduct actual and progressive experiments with
phantoms of simulated fat and muscle tissues heated at 2450 MHz. The
experimental results showed that the heating power penetration depth
increased 40 percent with this applicator as compared to a simple rectangu-
lar waveguide applicator with the same size aperture that had generally
been used for microwave hyperthermia. Our applicator had a concave-
shaped aperture and was designed to contact well with the heating medium
whose shape was cylindrical like a human body.

1. INTRODUCTION

The development of noninvasive localized heating techniques
for the human body is indispensable for hyperthermia. Dielectric
heating by electromagnetic (EM) waves is one of the best means
for providing these heating techniques. EM techniques and appli-
cators for medical diagnosis and therapy have recently been
observed [1]-{3]. To perform effective hyperthermia, the design of
an applicator to transfer EM energy to the treatment area is an
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Fig. 1. Schematic of lens applicator of direct contact type.

important problem. When microwave EM fields are used, the
depth of penetration is generally shallow and it is difficult to heat
deep-lying tissues and relatively large tissue volumes. To over-
come this difficulty, many different applicators have been devel-
oped [4]-[7]. The desired characteristics of a direct contact appli-
cator for microwave hyperthermia are to deposit EM energy
effectively in the defined tissue volume, to have a good imped-
ance matching, and to be easy to handle. In view of these
characteristics, hyperthermia applicators still have much room for
improvement [8].

The excellent features of this new type of applicator with a
convergent lens, designed by geometrical optics and a concave-
shaped aperture that provides good contact with the cylindrical-
shaped human body, have been previously presented [9]-[11].

Our plan of presentation is as follows. In the second section,
we propose a new lens applicator for hyperthermia in order to
deposit EM field energy inside the deep medium, and carry out
heating experiments using phantom modeling material for human
tissues. We calculate theoretically the electric field distribution
from the applicator. We compare our results with the electric
field distribution obtained from traditional waveguide. Finally
with our apparatus, we present and discuss the results.

II. DEVELOPMENT OF LENS APPLICATOR

A. Design Principle of the Lens Applicator of Direct Contact Type

Assume that a paralle] metal-plate medium with plate distance
w and filled with a dielectric material with complex dielectric
constant €]~ je{’ (=€) is inserted into a waveguide so that the
metal plates are in parallel to the E-plane (see Fig. 1). Letting A’
be the wavelength of the EM wave in the dielectric material, the
EM wave in the metal-plate medium has the propagation mode
TE,, for the range of a constant separation w between each pair
of the metal plate satisfying A’/2 <w < ). The propagation
constant k,, then is given by

2
Lk = 2 P ier?y 1
n “"“’(El J€1 .
w

When such a waveguide applicator, with the metal-plate
medium filled with dielectric material, is made to contact to
another dielectric material at the aperture, the EM wave refracts
at the boundary of dielectric materials, as is seen from the theory
of geometrical optics. Letting the complex dielectric constant of
the dielectric material in contact with the applicator be €5 — je¥
(= €%) (see Fig, 1), the propagation constant of the medium k_,,
is given as in

€Y

()

kout =B_ja
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