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Short Papers

Step Response of Lossless Nonuniform Transmission

Lkes with Power-Law Characteristic Impedance
Function

H. CURTINS, STUDENT MEMBER, lEEE, AND

A. V. SHAH, MEMBER, IEEE

Abstract —The stepresponse waveform of the Iossless nonuniform trans-

mission line possessing a characteristic impedance function Z=(x)=

ZO(l + qx)z”, n = 0,1,2,..., is deduced. The simple and closed-form solu-

tions should be useful for pulse transient analysis involving nonuniform

transmission lines.

I. INTRODUCTION

Nonuniform transmission lines (NTL’s) are used, e.g., as im-

pedance matching devices [1]-[4], pulse transformers [9]-[12],

filters [5], resonators [2], directional couplers [6], etc. Their

frequency-domain behavior has been investigated extensively for

a number of special NTL types. In certain cases, it is desirable to

find exact and closed-form solutions for the transient response of

NTL’s. Even though a number of different methods were devel-

oped in the past (see, e.g., [10]), the approach via the Laplace

transform seems to be one of the most suitable in achieving the

above goal. Note that the availability of time-domain solutions

by this method depends strongly on the kind of limit conditions

(source and load impedances, Z, and Z~, respectively) imposed

onto the system [10]. To the authors’ best knowledge, closed-form

time-domain solutions so far have not been reported at all, for

any class of NTL’s, except for a single special case [11]. In fact,

the calculation of the transient response of NTL’s tends to

become a very involved computational problem. Reference [9]

illustrates well the degree of complexity encountered in deriving

the expressions for step response of the exponential transmission

line (ETL).

The present analysis aims to deduce the expressions for the

step response of a whole class of NTL’s characterized by the

characteristic impedance function Z,(x) = ZO(1 + qx) 2“, n =

0,1,2,..., hereafter referred to as the power-law transmission line

(PLTL). Frequency-domain solutions for this type of transmis-

sion line have already been presented, e.g., by [4], [7]–[8], where

exact network functions are also given. The parabolic transmis-

sion line (PTL) analyzed by the authors in [11] with index n = 1 is

contained as a special case in this time-domain analysis. On the

other hand, the ETL treated in numerous papers (frequency-

domain treatment) is reached asymptotically by this class of lines,

ifn-+m.
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II. BASIC SOLUTIONS

The analysis is based on the following assumptions for the

characteristic impedance Z.(x) and the propagation function

Y(P):

z,(x) = zo(l+qx)2n, ?2= 0,1,2,...

)

(1)
Y (P)= P/c

where

x position along the line,
q taper parameter,
p Laplace transformation complex variable,

c wave propagation velocity ( = constant).

Using (l), one finds as solutions of the well-known second-order
differential equations [1]–[3], [9] describing the propagating volt-
age V(X, y) and current 1(x, y), [12], [13]

, (n+k)! ‘q k
~+(x, y)=exp(~yx)y” ~ (*1)

k=O (-)k!(n– k)! 2yy

I+(x, y)=

+exp(~yx)
n—l

Z. ()
-,-” ~ (+1)’ ‘n+k-l)! ~ h (2)

k=O
k!(}l–k–l)! 2yy

where y = (1 + TX). The suffix + denotes waves traveling in the

+ x-direction and – x-direction, respectively. By setting n = + 1,
one may verify the solutions for the PTL given by [11] (n = O
corresponds to the solutions of the uniform transmission line).1

III. STEP-RESPONSE WAVEFORM

We are interested in the waveform ~( 1, ~), which appears across

the load Z, (see configuration shown in Fig. 1), if the transmis-

sion line is excited by a unit step generator at its input. Further-

more, the time t shall be limited to the range Z/c < t< 3i/c,

where I/c is the time delay of the line and 31/c corresponds to

the time after which the first reflection returns from the sending

end. One then obtains. using (2) and evaluating it for the limit

conditions at x = O and x = / (Fig. 1), the Laplace transform

F(l, p) [12]

2 V2yf 2’7-1 exp( – pi/c)

~(z’p)= (~+v,)(y:. +.2) “PL(:=O, P) P2(X=1>P)

(3)

*Here, n M a positive integer number. For negatwe n, one obtains by

symmetry considerations of the differential equations for voltage and current:

~+(.~,p;n < 0)= +ZOI+(X, p:n> O) and l+(.x, p;n< 0)=
*(l/zo)v* (x, p;72>o)
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Fig. 1. Basic configuration analyzed,
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Fig. 2. Calculated step-response curves ~(t)= ~ ( 1, t) as function of the nor-

malized time ct /1 with the voltage transfonmng ratio M and the power

index n as parameters. The following conditions are assumed: UI = Z, /20 = 1

and V2 = Z,/Z@ = M2.

where

PI = Z,/Zo V2 = Z,/Zo and yl = (1+ ql)

Pl(x=o, p)= *[ V+(O,P)+Z.I+ (O, P)]P”

P2(x=l, p)=

(4)

where PI and Pz are polynomials of order n in p, and ~+, ~_,

1+, I_ are the basic solutions given in (2).

If we denote the zeros of PI by pl,..., p. and the zeros of Pz

by p,,+*,..., pz~, then the step-response waveform ~(1, t) results

in

2 v~y;
f(l, t)= Y a,exp[p,(t -1/c)],

(1+ VI)(Y??”+V2) /c=l

I
:. (5)–<t<—

c

The expression for the coefficient a~ is given by

P#?’-l
~k = (6)

j@k-Pm)

m~k

The procedure involved in finding the step-response waveform

for a given power index n can consequently be summarized into

the following important steps: Calculation of a) polynomials PI

and Pz via (4), b) zeros of PI and P2, and c) the step-response

waveform f ( 1, t) using (5) and (6).

In Figs. 2 and 3, several step-response curves are graphically

illustrated for different voltage transforming ratios M = y~ and

for two different values of the generator impedance Z.. In

addition, in Fig. 3, the PLTL is compared with the exponential

transmission line (ETL) analyzed by Schatz [9].

IV. ZEROS OF Pi(p) AND Pz ( p)

One can show that all zeros of the polynomial PI are in the

left-half p-plane (Re(p) < O), while all zeros of P, are situated in

—power law (0=5)

b

---pa rabo\[c (n.1)

: .. exponential
i . ... .
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Fig. 3. Comparison of calculated step-response waveforms for the ETL, PTL,

and PLTL (n = 5) for two vafues of the voltage transforming ratio M. The

followimz rmmrneters are assumed for the calculation: v, = Z. /2,, = O and
e, . . . “

VI = -ZI lZO = M*. (Note: The evaluation of the step-response waveform for
the ETL under arbitrary limit conditions Z. and 2( is rather complex. The

curves for the ETL in this figure are taken from [9].)

TABLE I

ZEROS OF POLYNOMIALS PI AND Pz FOR Two DIFFERENT VALUES

OF THE CJENERATOR IMPEDANCE Z. = O AND Z, = Z..

1
I

k-
ZerosPk of polynomal P, ; k= 1, . . . ,n

F ‘ ‘
2 P1’,2 =-312? J &12 ‘ .. I!, IA

P1,2
p;,4= 1 t ,16

~ p:. -2.322 p;=-l .019 p:= 1.819

p;,3= -1.03’3?] 1.754 Pi ~ =-1.361 i, 1.525 *P5 ~= 1.341 !j 1.525

%,2
= -2.896:] 0.867 P; ~ = -2.394?J 0.704

4 %,6 =
2.394:J 0.784

p:, t= -2.104 ? > 2.657 px, k = -1.606 !J 2.307“ ‘
P7, ?3’

1.6C6Zj 2.387

p; =-3.6L7 p; . -3.143 ● . 3.1&3
‘6

5 P;,3= -3.352 ~ J 1.7*3 ‘‘2,3
= -2.850 ? j 1.605 “p7, a= 2.850 ? j 1.605

p;+5 =-2.325 Z >3.571 p~.5= -1.820 ?j 3.272 ●
‘9,10=

1.82B?3 3.272

In both cases, a load impedance Z, = ZOy~” = ZO M2 M assumed (the

load impedance is matched to the impedaoce level of the line at x = f).

The zeros for any other values of Z, and Z, can be calculated using (4).

the right-half p-plane (Re( p ) > O) [12].2 In Table I, the zeros are

calculated for the generator impedance Z, = O and Z, = ZO. In

both cases, Z,= 20 y~” (matched configuration at the load).

V. CONCLUSIONS

The extension of the step-response analysis for the parabolic

transmission line (n =1) to the more general case of the char-

acteristic impedance function Zc (x) = Z. (1 + ql)2”, is =

0,1,2,..., expands the class of nonuniform transmission lines

having a simple step-response waveform. The model should con-

sequently be useful for transient analysis involving nonuniform

transmission lines. Because of the relationship

()
Ox ?.

ZC(x)=Zoexp(qx)= lim ZO l+fi
n-m

such a power-law transmission line may be used to approximate

the step response of the exponential line. Fig. 3 shows this

approximation behavior. As may be seen from [9], such an
approximation function facilitates considerably the quantitative

evaluation of the step response waveform (at least for reasonably

low values of the power index n).

2 The reader should not get confused by the fact that the zeros of the

polynomml P2 are in the right-half p-plane (Re(p ) > O) The stabihty of the

system is still assured, as the time variable twas hmited to t< 31/c (see (5)).
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Development and Testing of a 2450-MHz Lens Applicator

for Localized Microwave Hyperthermia

YOSHIO NIKAWA, MAKOTO KIKUCHI,

AND SHINSAKU MORI

M.$tract —A new type of applicator with a convergent lens for localized

microwave hyperthermia is developed. A lens applicator of direct contact

type was designed to conduct actual and progressive experiments with

phantoms of simulated fat and muscle tissues heated at 2450 MHz. The
experimental results showed that the heating power penetration depth

increased 40 percent with this applicator as compared to a simple rectangu-

lar waveguide applicator with the same size aperture that had generally

been used for microwave hyperthermia. Our applicator had a concave-

shaped apertore and was designed to contact well with the heating medium

whose shape was cylindrical like a human body.

I. INTRODUCTION

The development of noninvasive localized heating techniques

for the human body is indispensable for hyperthermia, Dielectric

heating by electromagnetic (EM) waves is one of the best means

for providing these heating techniques. EM techniques and appli-

cators for medical diagnosis and therapy have recently been

observed [1]– [3]. To perform effective hyperthermia, the design of

an applicator to transfer EM energy to the treatment area is an
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Fig. 1. Schematic of lens applicator of dmect contact type.

important problem. When microwave EM fields are used, the

depth of penetration is generally shallow and it is difficult to heat

deep-lying tissues and relatively large tissue volumes. To over-

come this difficulty, many different applicators have been devel-

oped [4]–[7]. The desired characteristics of a direct contact appli-

cator for microwave hyperthermia are to deposit EM energy

effectively in the defined tissue volume, to have a good imped-

ance matching, and to be easy to handle. In view of these

characteristics, hyperthermia applicators still have much room for

improvement [8].

The excellent features of this new type of applicator with a

convergent lens, designed by geometrical optics and a concave-

shaped aperture that provides good contact with the cylindrical-

shaped human body, have been previously presented [9]–[11].

Our plan of presentation is as follows. In the second section,

we propose a new lens applicator for hyperthermia in order to

deposit EM field energy inside the deep medium, and carry out

heating experiments using phantom modeling material for human

tissues. We calculate theoretically the electric field distribution

from the applicator. We compare our results with the electric

field distribution obtained from traditional waveguide. Finally

with our apparatus, we present and discuss the results.

II. DEVELOPMENT OF LENS APPLICATOR

A. Design Principle of the Lens Applicator of Direct Contact Type

Assume that a parallel metal-plate medium with plate distance

w and filled with a dielectric material with complex dielectric

constant c; – jc~’ ( = c?) is inserted into a waveguide so that the

metal plates are in parallel to the E-plane (see Fig. 1). Letting k’

be the wavelength of the EM wave in the dielectric material, the

EM wave in the metal-plate medium has the propagation mode

TEIO for the range of a constant separation w between each pair

of the metal plate satisfying X’/2 < w < A’. The propagation

constant k ,n then is given by

(1)

When such a waveguide applicator, with the metal-plate

medium filled with dielectric material, is made to contact to

another dielectric material at the aperture, the EM wave refracts

at the boundary of dielectric materials, as is seen from the theory

of geometrical optics. Letting the complex dielectric constant of

the dielectric materiaf in contact with the applicator be c~ – jc~

( =(j) (see Fig. 1), the propagation constant of the medium kou,

is given as in

kou, = ~ – ja (2)
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